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Abstract
Temperature dependence of the London penetration depth λ measured in single crystals of
CeCoIn5 is interpreted as being caused by a strong pair-breaking scattering that makes the
superconductivity in this compound gapless. For a gapless d-wave superconductor, we derive
λ = λ0(1 − T 2/T 2

c )
−1/2 caused by the combined effect of magnetic and non-magnetic

scattering, in excellent agreement with the data in the full temperature range and with the
gapless s-wave case of Abrikosov and Gor’kov. We also obtain the slope of the upper critical
field at Tc that compares well with the measured slope.

(Some figures in this article are in colour only in the electronic version)

The heavy-fermion superconductor CeCoIn5 is still under
intensive scrutiny after its discovery in 2001 [1]. This is a
clean (the mean free path greatly exceeds the coherence length
ξab ≈ 80 Å), nearly two-dimensional (with small 3D
pockets) [2], d-wave superconductor [3]. In the normal phase
at T > Tc = 2.3 K, the material is a paramagnet [4].
The main interest of the community has been focused on low
temperatures and high fields where the inhomogeneous Fulde–
Ferrell–Larkin–Ovchinnikov (FFLO) phase is suspected to
exist. In this work we are interested in zero-field superfluid
density and the c-directed upper critical field Hc2 near
Tc, the domain removed from complications of FFLO and
paramagnetic constraints. Understanding the ground state
properties is of utmost importance for definite predictions
about the existence of more complex phases such as FFLO.

Single crystals of CeCoIn5 were grown from an In flux by
combining stoichiometric amounts of Ce and Co with excess In
in an alumina crucible encapsulated under vacuum in a quartz
tube [1]. The crystals used were 1×1×0.2 mm3 and magnetic
measurements showed practically no hysteresis.

The magnetic penetration depth was measured with a
tunnel-diode resonator sensitive to changes in λ of about 1 Å.
Details of the technique are described elsewhere [5]. In short,
a properly biased tunnel diode maintains a self-resonating tank

circuit on its resonant frequency ω ∼ 14 MHz. A sample is
inserted into the coil on a sapphire rod. Changes in the effective
inductance cause a shift in ω proportional to the real part of the
dynamic magnetic susceptibility. The system is calibrated by
matching the T -dependent skin depth just above Tc. To probe
λab, a small ac magnetic field (∼20 mOe) is applied along
the c axis, so that the screening currents are flowing in the ab
plane [5].

The London penetration depth λab(T ) as a function of
temperature is shown in figure 1. With excellent accuracy, the
data from 0.5 K all the way to 2.1 K are described by

λab = λ(0)
/√

1 − t2, t = T/Tc. (1)

In fact, our data are close to those reported in [6] (the grey band
in figure 1); our interpretation, however, is different.

Since our technique only provides information on the
change �λ(T ), we compare our data with those of [6], where
λ(0) was estimated from the surface impedance data. By
shifting our dataset (circles in figure 1) we obtain a one-to-
one correspondence with the data of [6] shown in figure 1
by the wide grey band (in fact both datasets just collapse on
top of each other). The solid line is the fit to equation (1)
in the full temperature interval. The only fitting parameter,
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Figure 1. The data on λ(T ) and the fit to equation (1) with λ(0) as
the single fitting parameter. Grey line: data from [6]. Inset: normal
fluid fraction, 1 − (λ(0)/λ(T ))2 versus (T/Tc)

2 in the full
temperature range. Solid line is y = x , not a fit.

λ(0) = 358 nm, is larger than 281 nm obtained in [6] from the
low T part of the data. The fit is of a high precision, reflected in
the value of the ‘coefficient of determination’ R2 = 0.999 91
(for a perfect fit R2 = 1).

Thus, the superfluid density 1/λ2 behaves as (1 − t2)

in the whole temperature domain. This is certainly not a
dependence characteristic of clean d-wave materials where it
should be linear at low T s (neither is it s-wave, of course). It
has been argued in [7] that the linear low-T dependence might
be transformed to T 2 by strong transport scattering. This,
however, does not help in our case since the material of interest
here is extremely clean. On the other hand, Abrikosov and
Gor’kov (AG) in their seminal paper [8] on pair-breaking by
magnetic impurities in isotropic s-wave materials found the
dependence (1) at all temperatures from 0 to Tc for a strong
spin-flip scattering when Tc is suppressed to nearly zero and
the superconductivity is gapless.

This suggests that a similar situation may take place in
CeCoIn5, although the reason for the pair-breaking may not be
the spin-flip scattering on independent magnetic impurities of
AG. Instead, it might be scattering on excitations of the Kondo
system of interacting local moments [9]. The situation is far
from being clear as is shown by transport measurements with
magnetic and non-magnetic substitutions [10]. Alternatively,
the gaplessness might be caused by only a part of the Fermi
surface being fully gapped in multiband scenarios [11, 12].

Long experience of dealing with pair-breaking effects
reveals that all of them are described by the AG formalism,
provided the dimensionless pair-breaking parameters are
properly defined for each particular case [13]. Below we use
the AG formal scheme, having in mind, however, that the actual
cause for pair-breaking is not known. Following this scheme
we characterize the scattering by two parameters:

ρ = h̄/2πTcτ, ρm = h̄/2πTcτm (2)

where Tc is the critical temperature (not to be confused with the
hypothetical Tc0 of the material free of scattering), and 1/τ and

1/τm are the transport and the pair-breaking scattering rates.
As mentioned, AG find λ−2 ∝ 1 − t2 for sufficiently strong
pair-breaking in dirty isotropic s-wave materials with ρ � ρm.
The material of interest here is a clean d-wave [3]; we show
below that this T dependence holds in this situation as well.

Within microscopic theory, the penetration of weak
magnetic fields into superconductors is evaluated by first
solving for the unperturbed zero-field state and then treating
the effects of small fields as perturbations. Perhaps the simplest
for this task is the Eilenberger quasiclassical approach [14].
Formally, it consists of equations for the Eilenberger functions
f (r,v, ω), f + and g which originate from Gor’kov’s Green’s
functions integrated over the energy near the Fermi surface to
exclude fast spatial oscillations on the scale 1/kF:

vΠ f = 2� g

h̄
− 2ω f + g

τ− 〈 f 〉 − f

τ+ 〈g〉, (3)

−vΠ∗ f + = 2�∗ g

h̄
− 2ω f + + g

τ− 〈 f +〉 − f +

τ+ 〈g〉, (4)

1 = g2 + f f +. (5)

Here, v is the Fermi velocity, Π = ∇ + 2π iA/φ0, φ0 is
the flux quantum. � is the order parameter which may depend
on the position kF at the Fermi surface (or on v) in cases other
than the isotropic s-wave; for a d-wave material with a simple
cylindrical Fermi surface the order parameter can be written as

� = 
(r, T )�, � = √
2 cos 2ϕ, (6)

where ϕ is the azimuthal angle on the Fermi cylinder and � is
normalized to have 〈�2〉 = 1.

Further, ω are Matsubara frequencies defined by
h̄ω = πT (2n + 1) with an integer n, 〈· · ·〉 denote averages
over the Fermi surface and

1

τ± = 1

τ
± 1

τm
. (7)

The system (3)–(5) should be complemented with the
self-consistency equation for the order parameter and with an
expression for the current density. For the d-wave symmetry,
both magnetic and non-magnetic scattering suppress the
critical temperature [15]. The self-consistency equation in the
form taking this into account is

ln
Tc

T
=

∞∑

n=0

(
1

n + 1/2 + ρ+/2
− 2πT



〈� f 〉

)
, (8)

where ρ+ = ρ + ρm. Finally, the current density expression
completes the Eilenberger system:

j = −4π |e|N(0)T Im
∑

ω>0

〈vg〉; (9)

N(0) is the total density of states at the Fermi level per one
spin.

Calculation of λ(T ; τ, τm) for arbitrary τ s is difficult
analytically. However, for a strong Tc suppression, the problem
is manageable. We begin with a uniform zero-field state for
which ρ+ is close to the critical value where Tc → 0; in this
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state f  1 and g ≈ 1 − f 2/2 in the whole temperature
range [8]. One can look for solutions of equation (3) as
f = f1 + f2 with f2  f1. In the lowest approximation
equation (3) yields

2�/h̄ − 2ω f1 + 〈 f1〉/τ− − f1/τ
+ = 0. (10)

Since 〈�〉 = 0 for the d-wave materials, averaging of this
equation over the Fermi surface gives 〈 f1〉 = 0 as well. Taking
this into account we have

f1 = �/h̄ω+, ω+ = ω + 1/2τ+. (11)

The next approximation yields

f2 = �

2h̄3ω+3

( 〈�2〉
2τ+ω+ −�2

)
. (12)

Making use of � = �
 , 〈�2〉 = 1, 〈�4〉 = 3/4 for a
Fermi cylinder, we evaluate

〈�( f1 + f2)〉 = 


h̄ω+ + 
3(2 − 3ω+τ+)
8h̄3ω+4τ+ . (13)

Substitute this in equation (8), express the sums in terms
of di-gamma functions and utilize the asymptotic expansion
ψ(z + 1/2) ≈ ln z + 1/24z2 for z = ρ+/2t � 1:

− ln t = ψ

(
ρ+

2t
+ 1

2

)
− ψ

(
ρ+

2
+ 1

2

)

− 3
2

64π2T 2

[
ψ ′′

(
ρ+

2t
+ 1

2

)
− 2ρ+

9t
ψ ′′′

(
ρ+

2t
+ 1

2

)]

≈ − ln t + t2 − 1

6ρ+2
+ 
2

48π2T 2
c ρ

+2
. (14)

Hence, we obtain


2 = 8π2 (T 2
c − T 2). (15)

This differs from the result for isotropic s-wave superconduc-
tors with magnetic impurities of nearly critical concentration,
by a four times larger pre-factor [8]. The ratio

�max(0)/Tc = 4π (16)

is considerably larger than 2.14 for the clean d-wave case. This
ratio, estimated from the point-contact spectroscopy data for
CeCoIn5, is 12.1±1.5 [16]3. Given the simplicity of the model
employed (weak coupling, cylindrical Fermi surface, a source
of pair-breaking still to be established) the proximity of the
experimental value to the model of 4π is remarkable.

It is worth mentioning as a side remark that, even
without magnetic scatterers, the superconductivity in d-wave
materials becomes gapless in the domain of interest here with
ρ+ � 1. To see this, examine the density of states
N(ε) = N(0)Re g(h̄ω → iε) using g = 1 − f 2/2 =
1 − (�/h̄ω+)2/2:

N(ε)

N(0)
= 1 − 2�2τ+2

h̄2

1 − η2

(1 + η2)2
, η = 2τ+ε

h̄
. (17)

3 Note: in fact, this paper reports two gaps for this material, �1 = 2.4 meV
and �2 = 0.95 meV, so that �1/Tc = 12.1 whereas�2/Tc = 4.8.

Hence, at zero energy, N(ε) has a non-zero minimum (i.e. the
superconductivity is gapless), whereas the maximum of N(ε)
is reached at εm = h̄

√
3/2τ+.

Weak supercurrents and fields leave the order parameter
modulus unchanged, but cause the condensate to acquire an
overall phase θ(r). We therefore look for perturbed solutions
in the form

� = �0 eiθ , f = ( f0 + f1) eiθ ,

f + = ( f0 + f +
1 ) e−iθ , g = g0 + g1,

(18)

where the subscript 1 denotes small corrections. In the London
limit, the only coordinate dependence is that of the phase θ , i.e.
f1, g1 can be taken as r-independent.

The Eilenberger equations (3)–(5) provide the corrections
among which we need only g1:

g1 = ih̄ f 2
0 vP

2(�̃ f0 + h̄ω̃g0)
≈ i f 2

0 vP

2ω+ . (19)

Here P = ∇θ+2πA/φ0 ≡ 2π a/φ0 with the ‘gauge-invariant
vector potential’ a and

�̃ = �+ h̄〈 f 〉/2τ−, ω̃ = ω + 〈g〉/2τ+. (20)

In the case of interest, f0 ≈ �/h̄ω+  1, and the denominator
in equation (19) is taken in the lowest order. We now substitute
g0+g1 in the current (9) and compare the result with 4π ji/c =
−(λ2)−1

ik ak to obtain

λ−2
aa = 32πe2 N(0)v2

c2ρ+2
(1 − t2). (21)

Using the data of figure 1 with estimates for N(0) and
v taken from [4], we obtain ρ+ ≈ 8; estimates of [3] yield
ρ+ ≈ 5. Hence, the statement that CeCoIn5 is gapless is not
only in excellent agreement with the T dependence of λ, but
the scattering parameter ρ+ is sufficiently large for our model
to hold.

There are quite a few reports of Hc2(T ) for CeCoIn5,
see, e.g., [17]. Our data are shown in figure 2. For a strong
pair-breaking model with fixed scattering parameters Hc2 ∝
(1 − t2) [8], which is clearly different from the experimental
behaviour. In a strong paramagnet such as CeCoIn5, the
magnetic scattering rate (and ρm) may itself depend on the
applied field, making our model with a fixed ρm inapplicable
per se along the whole Hc2(T ) curve. However, near Tc where
Hc2 → 0, we expect the model to hold. We therefore evaluate
only Hc2(T ) near Tc; in other words, we derive the Ginzburg–
Landau equation containing the coherence length ξ for the
gapless case with a strong pair-breaking.

Near Tc, we look for a solution f of equation (3) as an
expansion in two small parameters:

�

h̄ω+ ∼ �

Tc
∼ δt1/2, and

vΠ�
h̄ω+2

∼ �ξ0

Tcξ
∼ δt

3
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Figure 2. The upper critical field Hc2(T ) ‖ c. Inset: the domain near
Tc with an estimate of the slope.

where δt = 1 − T/Tc; the smallness of the second parameter
comes from the ‘slow variation’ requirement. We obtain after
simple algebra

f = �

h̄ω+ − vΠ�
2h̄ω+2

+ O(δt3/2). (22)

Further, the self-consistency equation (8) which is now




2πTc
δt =

∑

ω>0

(



h̄ω + πTρ+ − 〈� f 〉
)
, (23)

should be taken into account. To evaluate 〈� f 〉, we substitute
g = 1 − f f +/2 in equation (3), multiply it by �/ω+ and take
the average over the Fermi surface:

1

2ω+ 〈�vΠ f 〉 = 


h̄ω+ − 〈� f 〉 − 3
|
|2
8h̄3ω+3

+ 
|
|2
4h̄3ω+4τ+ .

(24)

Writing the last two terms, we can take f in the lowest order;
also we make use of � = 
�, 〈�2〉 = 1 and 〈�4〉 = 3/4. On
the left-hand side we have

1

2h̄ω+2
〈�2vΠ
〉 − 1

4h̄ω+3
〈�2(vΠ)2
〉

= − 1

4h̄ω+3
〈�2vivk〉�i�k
; (25)

summation over the repeated indices is implied.
We now sum up equation (24) over ω and take

∑〈� f 〉
from the self-consistency equation (23). All sums obtained are
expressed in terms of di-gamma functions, for which the large
argument asymptotics can be used. We are interested in the
field along the c-crystal axis, whereas the plane ab can be taken
as isotropic. After straightforward algebra one obtains the GL
equation in the standard form

−ξ 2�2
 = 
(1 − |
|2/
2
0 ) (26)

with

ξ 2 = 3h̄2v2

16π2T 2
c δt

, 
2
0 = 16π2T 2

c δt . (27)

We note that 
2
0 is the zero-field order parameter of

equation (15) obtained there by a different method.
Although the scattering parameters do not enter explicitly

the coherence length, they affect ξ through Tc(ρ
+).

Equation (27) shows that the scattering, whatever it is,
enhances ξ . In other words, in the gapless d-wave regime, the
effect of scattering upon the coherence length is opposite to the
familiar s-wave situation where ξ is suppressed by scattering.
When the scattering approaches the critical value for which
Tc → 0, ξ diverges. The slope of the upper critical field at
T → Tc follows

H ′
c2(Tc) = −8πφ0Tck2

B

3h̄2v2
, (28)

where the temperature is given in degrees kelvin. Hence, the
slope decreases when scattering is intensified. We observe
that the Fermi velocity can now be expressed in terms of the
measured slope and Tc. This yields v = 0.78×106 cm s−1, the
value close to v = 0.77 × 106 cm s−1 as estimated in [3]. We
note, however, that, based on the heat capacity and resistivity
data, [4] reports v = 2 × 106 cm s−1.

To conclude, the data on the T dependence of the
penetration depth in the full temperature range and on the
upper critical field near Tc strongly support the notion that the
superconductivity in CeCoIn5 is well described by the presence
of a strong pair-breaking which makes the superconductivity
in this compound gapless. A large experimental ratio �m/Tc

for this compound also follows from the combination of the
d-wave symmetry and a strong pair-breaking, equation (16).
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